基本初等函数在其定义域内均连续,初等函数在其定义区间(即定义域内的区间)是连续的. 定义域是函数成立的区域出来这个区域函数可成立可不成立,因为在这个区域内,x 是连续的所以函数值也连续.

基本初等函数在其定义域内都是连续的,这句话对吗? 对

是基本初等函数还是初等函数在定义域内连续

基本初等函数在定义域内都是连续的,tanx也是基本初等函数,但是它的值域里有无穷大.tanx连续吗? 首先明确一点,基本初等函数在定义域内都是连续的.如果你读初中或者高中,那么记住这一点就好了,你想想y=x这个函数值域也是无穷大,当x趋近于无穷大时,y也为无穷大,但它也是连续的.我想你迷惑的是tanx存在没有定义的点,.

一切初等函数在其定义域内都是连续的,这句话为什么是错误的?

基本初等函数构成的复合函数在其定义域内连续吗?我看网上说连续。求教,谢谢。

所有基本初等函数在其定义域内都是连续的,这句话对吗

基本初等函数在定义域内都是可导的吗是基本初等函数? 基本初等函数在定义域内不一定都是可导的。初等函数在定义域内一定连续,但不一定可导!举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数。y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立。y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立初等函数在定义域内一定连续,但不一定可导!举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数。y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立。方根是基本初等函数,但在x=0处不可导。例如:幂函数y=x^(1/2),定义域x≥0。导数y=1/2?x^(-1/2),只有当x>;0可导。又如,幂函数y=x^(2/3),定义域R,但在x=0处不可导。由于函数的可导性要用到函数的。

基本初等函数在定义域内都是可导的吗 是基本初等函数 不一定。例如,幂函2113数y=x^5261(1/2),定义域x≥0.导数y=1/2?x^4102(-1/2),只有当x>;0可导。又如,幂函数1653 y=x^(2/3),定义域R,但在x=0处不可导。由于函数的可导性要用到函数的极限知识,而现行课标、教材不学极限。所以中学不讲可导性。

基本初等函数在定义域内连续吗 是基本初等函数还是初等函数在定义域内连续