ZKX's LAB

椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义? 二维抛物型偏微分方程的算例

2020-12-04知识3

如何用matlab解二维的非线性偏微分方程组, 其中每个方程是抛物线型的 如何用matlab解二维的非线性偏微分方程组,其中每个方程是抛物线型的 MATLAB提供两种解决PDE问题:pdepe()函数求解般PDEs据用较通用性支持命令行形式调用 二PDE工具箱求解。

椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义? 二维抛物型偏微分方程的算例

求解抛物线型偏微分方程matlab程序 MATLAB提供两种解决PDE问题:pdepe()函数求解般PDEs据用较通用性支持命令行形式调用二PDE工具箱求解特e69da5e6ba903231313335323631343130323136353331333365666232殊PDE问题PDEtool较局限性比能求解二阶PDE问题并且能解决偏微程组提供GUI界面繁杂编程解脱同通File->;Save As直接M代码MATLAB语言提供pdepe()函数直接求解般偏微程(组)调用格式sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t)【输入参数】pdefun:PDE问题描述函数必须换面标准形式PDE编写面入口函数[c,f,s]=pdefun(x,t,u,du)m,x,t应于(式1)相关参数duu阶导数由给定输入变量即表示c,f,s三函数pdebc:PDE边界条件描述函数必须先化面形式于边值条件编写面函数描述[pa,qa,pb,qb]=pdebc(x,t,u,du)其a表示边界b表示边界pdeic:PDE初值条件必须化面形式股我使用面简单函数描述u0=pdeic(x)m,x,t:应于(式1)相关参数【输参数】sol:三维数组sol(:,:,i)表示ui解换句说uk应x(i)t(j)解sol(i,j,k)通sol我使用pdeval()直接计算某点函数值

椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义? 二维抛物型偏微分方程的算例

二维抛物型微分方程时间方向采用什么离散方法? 请问这个方程是不是缺了关于对时间求偏导数的项而且有没有初值条件,边值条件?

椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义? 二维抛物型偏微分方程的算例

椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程的分类依据是什么? 不,你这分类只是linear equations的分类。下午提的问题,既然没人回答,只好自己再查一下。分类依据我做了个图,如下: (经 Siran Li 和 pyxv 提醒,该分类确实只针对两。

偏微分方程数值解法的图书目录: 第一章 边值问题的变分形式1 二次函数的极值2 两点边值问题2.1 弦的平衡2.2 Sobolev空间H?m(I)2.3 极小位能原理2.4 虚功原理3 二阶椭圆边值问题3.1 Sobolev空间H?m(G)3.2 极小位能原理3.3 自然边值条件3.4 虚功原理4 Ritz-Galerkin方法第二章 椭圆和抛物型方程的有限元法1 两点边值问题的有限元法1.1 从Ritz法出发1.2 从Galerkin法出发2 线性有限元法的误差估计2.1 H?1-估计2.2 L?2-估计 对偶论证法3 一维高次元3.1 一次元(线性元)3.2 二次元3.3 三次元?4 二维矩形元4.1 Lagrange型公式4.2 Hermite型公式5 三角形元5.1 面积坐标及有关公式5.2 Lagrange型公式5.3 Hermite型公式6 曲边元和等参变换7 二阶椭圆方程的有限元法7.1 有限元方程的形成7.2 矩阵元素的计算7.3 边值条件的处理7.4 举例8 收敛阶的估计9 抛物方程的有限元法第三章 椭圆型方程的有限差分法1 差分逼近的基本概念2 两点边值问题的差分格式2.1 直接差分化?2.2 积分插值法2.3 边值条件的处理?3 二维椭圆边值问题的差分格式3.1 五点差分格式?3.2 边值条件的处理3.3 极坐标形式的差分格式4 极值定理 敛速估计4.1 差分方程?4.2 极值定理4.3 五点格式的敛。

偏微分问题 椭圆型偏微分方程:二维平面稳定场方程,如稳定浓度分布,稳定温度分布,静电场方程,无旋稳恒电流场方程,无旋稳恒流动方程等抛物型偏微分方程:一维输运方程,如扩散方程,热传导方程等双曲型偏微分方程:一维波动方程,如弦振动方程,杆振动方程,电报方程等它们是分别描述二维平面稳定场,一维输运,一维波动问题的方程

椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义? 椭圆型偏微分方程:二维平面稳定场方程,如稳定浓度分布,稳定温度分布,静电场方程,无旋稳恒电流场方程,无旋稳恒流动方程等抛物型偏微分方程:一维输运方程,如扩散方程,热传导方程等双曲型偏微分方程:一维波动方程,如弦振动方程,杆振动方程,电报方程等它们是分别描述二维平面稳定场,一维输运,一维波动问题的方程

求解二维抛物线型偏微分方程matlab程序 function[u,x,y,t]=TDE(A,D,T,ixy0,bxyt,Mx,My,N)解方程 u_t=c(u_xx+u_yy)for D(1)(2),D(3)(4),0初值:u(x,y,0)=ixy0(x,y)边界条件:u(x,y,t)=bxyt(x,y,t)for(x,y)cBMx/My:x轴和y轴的等分段数N:t 轴的等分段数dx=(D(2)-D(1))/Mx;x=D(1)+[0:Mx]*dx;dy=(D(4)-D(3))/My;y=D(3)+[0:My]'*dy;dt=T/N;t=[0:N]*dt;初始化ufor i=1:Mx+1for j=1:My+1u(i,j)=ixy0(x(i),y(j));endendrx=A*dt/(dx*dx);rx1=1+2*rx;rx2=1-2*rx;ry=A*dt/(dy*dy);ry1=1+2*ry;ry2=1-2*ry;for i=1:Mx-1%(11.2.21a)P(i,i)=ry1;if i>;1P(i-1,i)=-ry;P(i,i-1)=-ry;endendfor j=1:My-1%(11.2.21b)Q(j,j)=rx1;if j>;1Q(j-1,j)=-rx;Q(j,j-1)=-rx;endendfor k=1:Nu_1=u;t=k*dt;for i=1:Mx+1%边界条件u(i,1)=feval(bxyt,x(i),y(1),t);u(i,My+1)=feval(bxyt,x(i),y(My+1),t);endfor j=1:My+1u(1,j)=feval(bxyt,x(1),y(j),t);u(Mx+1,j)=feval(bxyt,x(Mx+1),y(j),t);endif mod(k,2)=0for i=2:Mxj=2:My;bx=[ry*u(i,1)zeros(1,Mx-3)ry*u(i,My+1)]+rx*(u_1(i-1,j)+u_1(i+1,j))+rx2*u_1(i,j);u(i,j)=linsolve(P,bx');(11.2.21a)endelsefor j=2:Myi=2:Mx;by=[rx*u(1,j);zeros(My-3,1);rx*u。

请问具体如何区分,抛物型偏微分方程,双曲型偏微分方程,椭圆型偏微分方程? 依次是椭圆型,双曲型,双曲型AUxx+BUxy+CUyy+.=0Δ=B^2-4ACΔ=0:抛物型Δ>;0:双曲型Δ

偏微分方程中的时间和空间有数学意义吗? 众所周知,椭圆方程中不含时间,双曲方程和抛物方程中有时间,包不包含时间导致了不同的求解方法。可是,…

随机阅读

qrcode
访问手机版