ZKX's LAB

为什么当年双缝干涉延迟实验让科学家感到恐怖? 双缝实验 平行世界

2020-07-19知识8

平行世界理论如何解释双缝实验? 有的人如此解释,当双缝实验发出一个光子的时候,。the single photon interference experiment is indistinguishable from the multiple photon interference experiment。.双缝实验是不是能说明世界有灵异存在?有没有科学解释? 科普:量子力学的单粒子双缝实验,它是否隐藏着量子世界的奥秘?单粒子双缝实验可以说是人类史上得到的最奇怪的实验结果之一。这也是最令人震惊的例证之一,它说明了量子世界与我们经典物理中的宏观世界是完全不同的。它表明了现实的本质可能完全不是物质的,至少与我们所熟知的世界大相径庭。图注:光波水波干涉实验的简单原理图注:水波干涉实验先从大家熟悉的说起,假设我们有一个皮球,它在水池里上下摆动,就会引起一圈一圈的水波向外扩散。在一段距离外设置一道中间有两条缝的挡板,然后当波纹碰上挡板时,大部分的波都会被挡板挡住,但波纹会从缝隙处穿过,然后开始新的波纹叠加,就会形成波的干涉条纹图案,也叫作干涉图。为什么会显示出这样的图案呢?这是因为当波纹穿过缝隙时,一个波纹的波峰刚好与另一个波纹的波峰重合,就会导致更大的波峰。当然两个波谷的叠加也能导致更剧大的波谷,我们把这种现象叫做“相长干涉”。但当一个波的波峰与另一个波的波谷相遇时,它们就会相互抵消,不会留下任何波纹,这就是“相消干涉”,所以在水面上有些地方会是起伏的波浪,有些地方是平静的水面并且交替变换。而且任何类型的波都会产生相似的干涉图,例如电磁波和声波。双缝干涉延迟实验到底验证了什么,为什么说它的实验结果很恐怖? 这个实验验看似是得到了一个细思极恐的结论,甚至说是打破了“因果律”,但是,其实这只是一种对“我们能够观测”的现象的解释,我试着说一说。双缝干涉一束光通过一个双缝后分为两束光,从光的波动学说上说,光由于是一种波,那么两束波相遇是会发生干涉效应的,也就是:波峰+波峰=叠加波峰+波谷=相消波谷+波谷=叠加于是就得到了干涉条纹。但是对于单光子来说,有两个缝会经过哪个缝呢?哥本哈根的解释是同时通过。那么这就匪夷所思了。惠勒延迟实验为了验证单光子干涉的结论,惠勒改进了双缝干涉实验。首先解释下实验装置。一束单色光经过一个半反半透镜,分成两束强度相等的光,再分别经过反射镜反射后在一个位置相遇,如果在这个位置再放上一个半反半透镜,精密地调整两束分光的光程差,那么可以使得两个探测器中一个总是得到干涉叠加的光,另一个总是得到干涉相消的光。单光子实验那么如果对于单个光子是什么情况呢?对于单个光子在遇到半透镜1的时候,从概率波角度解释,它有50%的概率走反射镜1的通路,有50%的概率走反射镜2的通路。如果不使用半透镜2,那么探测器1和2各有50%的概率探测到这个光子,这时候光子是一个粒子。而如果使用半透镜2,实验的结果是,。为什么当年双缝干涉延迟实验让科学家感到恐怖? 如果说宇宙不是完美的,它有BUG(漏洞),你信么?双缝干涉实验似乎一步步地发现了这个宇宙“漏洞双缝干涉实验是什么?当我们在水中丢下一块石头,那么水面就会产生波纹,如果同时丢下两块石头,两个水波之间就能够出现交叉的干涉条纹。这就是波能够互相干涉的特征。双缝干涉实验既在一个光源前放置一个开了两条缝隙的不透明挡板,挡板后面再放置一个能够观测到的背景。当我们打开光源,会看到背景上出现明暗相间的条纹,这就是简单的双缝干涉实验。这个实验证明了光是一种波!因为光在穿过两条缝隙后产生只有波特有的干涉,相反的波被抵消,相向的波被增强,导致背景上明暗相间的条纹。(日常生活中主动降噪耳机就是利用了这个原理,用相反的声波抵消了噪音)下面我们把实验升级一下,光源变得非常小,背景换成高灵敏高分辨的底片。打开光源后,一开始我们看到了无数随机分布的小点,随后这些小点越来越多最终形成明暗相间的条纹!实验升级后证明光是一种粒子并且还具备波的特征,也就是光的波粒二象性!双缝干涉延迟实验虽然双缝干涉实验已经让人赞不绝口,不过科学家们还是在这个实验上再次升级。将光源变成一次发射一粒的电子!电子要通过这块挡板只能随机通过两条缝隙。如何理解平行宇宙? 首先要说明的一点是,平行宇宙并不是科幻小说作者灵机一动创造出来的概念,而是科学家们根据观测到的事实…双缝实验到底是什么意思,谁能简单的给我阐述一下? 双缝实验是一种演示光子或电子等等微观物体的波动性与粒子性的实验。也是一种“双路径实验”。在这种广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。1961年,蒂宾根大学的克劳斯·约恩松(Claus J?nsson)创先地用双缝实验来检试电子的物理行为,他发现电子也会发生干涉现象。1974年,皮尔·梅利(Pier Merli),在米兰大学的物理实验室里,成功的将电子一粒一粒的发射出来。在探测屏上,他也明确地观察到干涉现象。2002年9月,约恩松的双缝实验,被《Physics World》杂志的读者,选为最美丽的物理实验。扩展资料:在双缝实验里,不论是电子、中子或是任何e799bee5baa6e59b9ee7ad9431333366306531其它量子尺寸的粒子,粒子抵达探测屏的位置的概率分布具有高度的决定性。量子力学可以精确地预测粒子抵达探测屏任意位置的概率密度,可是,量子力学无法预测,在什么时刻,在探测屏的什么位置,会有一个粒子抵达。这无可争议的结果,是经过多次重复地实验而得到的。这结果给予了科学家极大的困惑,因为无法预测粒子的抵达位置,这意味着没有。双缝实验为什么恐怖? 之所以说其恐怖,是双缝干涉实验,这个实验当观察者出现的后,光线32313133353236313431303231363533e58685e5aeb931333431373330粒子的干涉会消失,然后变成两个条纹。好像这些光线粒子不喜欢别人的关注一样,看到就出现,不看到就不出现,这不得不让人涌起恐怖的怀疑。当有人开始看一个物体的时候,这个物体就开始发出具有粒子特性的光,因此我们就看见了。当没有人观察的时候,这个物体就变成了波。通俗点来说,网络游戏在玩家们看来一直都是在不停的运行,无论我看还是不看,游戏都在那里。其实,根本就不是那样,我不看的时候,那边的游戏就停止了。如果电子是互不干涉地运动,穿过双缝落到黑板上是两道痕迹。如果电子是以波的形式运动,由于波之间存在干涉,穿过双缝落到黑板上是一道道痕迹。一开始实验表明电子以波的形式运动。即使一个个电子发射,黑板上还是一道道痕迹。于是科学家想知道为什么一个个电子发射也会有波的现象,于是将高速摄像机对准双缝以便观察。重点来了:当想进一步观察时,粒子却是是互不干涉地运动,穿过双缝落到黑板上是两道痕迹。双缝实验,著名光学实验,在1807年,托马斯·杨总结出版了他的《自然哲学讲义》,里面综合整理了他在。双缝干涉实验恐怖吗?恐怖在哪? 因为双缝干涉实验揭示了,量子力学描述的自然从常识来看,是荒唐的,但却完全符合实验。这对人类认知世界…光的双缝干涉实验以及电子的双缝干涉实验到底说明了什么,是关于平行宇宙的吗? 那是没人知道的,尽可能吹吧。这个实验最大的问题是明暗条纹怎么来的。其实很简单。并不是什么光峰谷叠加,而是暗条纹漫反射概率,明条纹光滑反射概率而已。漫反射才是暗条纹的主角。如果我们将一块镜子上画一条线,你会懂得这线起到漫反射作用为什么说双缝实验恐怖 因为双缝2113实验的结果完全超出了人们平时的认5261知。双缝实验的结果4102使人们或多或少的对这个1653世界的真实性产生了怀疑。如果我们没有观测的时候,那些除了我们自己可以观测到的人和事以外,其他的很多人和事会不会都是以波函数形式存在。当我们观测到某个人的时候,这个人就变得真实了,他(她)的过去、现在也就被确定了,而当我们不再观测这个人,那么他(她)是不是又回到了波函数的形式呢。简单的讲,有一对处于量子纠缠态光子A和B,一个研究人员将光子B用来实验,另一个研究人员却“偷偷的”通过光子A来观测光子B的状态。由于量子纠缠的超距作用,研究人员就可以神不知、鬼不觉的观测用于实验的光子。看到在这里,我们不得不佩服相关研究人员的脑洞,居然能想出这样的方法。然而事实上,这个实验的结果仍然和以前的相同:当有观测者的时候,根本就不会出现干涉条纹,而没有观测者的时候,干涉条纹又诡异的出现。双缝实验的结果都是一样,即微观粒子就像是一个个有思想的、无所不知的精灵,当没有观测者的时候,它们是一个个波函数,而当它们知道有人在观测它的时候,它们马上就只表现出粒子性,从不例外。参考资料来源:百度百科-双缝实验

#电子#双缝干涉#波的干涉#双缝实验

随机阅读

qrcode
访问手机版